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High-Order Symplectic Integration Methods for
Finite Element Solutions to Time Dependent
Maxwell Equations

R. Rieben, D. White, and G. Rodrigue

Abstract—In this paper, we motivate the use of high-order integration
methods for finite element solutions of the time dependent Maxwell equa-
tions. In particular, we present a symplectic algorithm for the integration of
the coupled first-order Maxwell equations for computing the time depen-
dent electric and magnetic fields. Symplectic methods have the benefit of
conserving total electromagnetic field energy and are, therefore, preferred
over dissipative methods (such as traditional Runge—Kutta) in applications
that require high-accuracy and energy conservation over long periods of
time integration. We show that in the context of symplectic methods, sev-
eral popular schemes can be elegantly cast in a single algorithm. We con-
clude with some numerical examples which demonstrate the superior per-
formance of high-order time integration methods.

Index Terms—Finite element methods, high-order methods, Maxwell
equations, symplectic methods, time domain analysis.

I. INTRODUCTION

We are concerned with the finite element solution of the time de-
pendent Maxwell equations on unstructured grids using a combina-
tion of both high-order spatial and high-order temporal discretization
methods. In this paper we focus our attention on the high-order tem-
poral discretization process, and we investigate the use of symplectic
integration methods. Such methods were originally developed to solve
numerical systems derived from a Hamiltonian formulation and have
been successfully used in the fields of astronomy and molecular dy-
namics where numerical accuracy and energy conservation are very im-
portant over large time integration periods [1]. Recently, these methods
have been adapted for use in computational electromagnetics (CEM)
in conjunction with the finite difference method. In [2] and [3] a sym-
plectic finite-difference time-domain (FDTD) algorithm is presented
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that is implicit, fourth order accurate and valid for orthogonal three-di-
mensional grids . In [4] and [5], the authors present a modified sym-
plectic FDTD method that is up to fourth-order accurate in space and
time. A variation using the linear “serendipity” finite elements of [6] is
also mentioned. Here, we proceed in a similar manner using high-order
symplectic integration methods in conjunction with a high-order vector
finite element method for use in nonorthogonal, unstructured grids. The
spatial discretization is handled by the use of Nédeléc [7] basis func-
tions of arbitrary order which are based on the properties of differen-
tial forms [8], [9]. For the Galerkin procedure applied to either the fre-
quency domain or time dependent Maxwell equations [10], there are
significant advantages to both one-form and two-form finite element
basis functions [11]; including the proper modeling of the jump discon-
tinuity of field intensities and flux densities across material interfaces,
the elimination of spurious modes in eigenvalue computations and the
conservation of charge in time-dependent simulations [11]. These prop-
erties are crucial for the elimination of late time instabilities caused by
improper spatial discretization as investigated by [12]-[14].

We begin with a method of lines approach to the discretization of
the time dependent Maxwell equations. We approximate the coupled
partial differential equations using a high-order vector finite element
scheme which yields a linear system of ordinary differential equations
(ODEs). This system is then be discretized in time via a finite difference
method to produce a series of update steps which propagate the solu-
tions forward in time. However, most high-order numerical integration
methods (e.g., Runge—Kutta, Adams—Bashforth) are dissipative. This
can lead to misleading results for systems that need to be iterated for
long time intervals [15], [16]. A solution is to use a symplectic time
integration method that conserves energy. Therefore, in this paper we
investigate and promote the use of symplectic methods for the time in-
tegration of Maxwell’s equations.

II. AMPERE-FARADAY SYSTEM

We begin with the coupled first-order time dependent Maxwell equa-
tions
OB —vx (n'B)=J(t)
ce—H =YV —_
ot I )
0
—B=-VxE 1
BT / (1
where € and p are (possibly tensor valued) functions representing the
material properties of the system and J(¢) is a time dependent current
source. Using a Galerkin finite element procedure with one-form (or
Curl-conforming) vector basis functions to discretize the electric field
intensity and two-form (or Div-conforming) vector basis functions to
discretize the magnetic flux density yields the following linear system
of ODEs

9 T L
Aae_lx Db—Aj

%b =—-Ke ?2)
where e and b represent the discrete differential one-form and two-
form electric and magnetic fields, respectively, K represents the dis-
crete C'url operator (i.e., the topological derivative matrix), A is the
one-form mass matrix computed using the material property function
€ to represent the dielectric properties, D is the two-form mass ma-
trix computed using the material property function ;' to represent
the magnetic permeability and j is the discrete two-form time depen-
dent current source. Note that the vectors ¢ and b will have different
dimensions and that the matrix I’ will be rectangular. This is due to
the dimensions of the Nédeléc polynomial spaces from which they are
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derived [7]. For an electromagnetic problem with no physical dissi-
pation due to conductivity or absorbing boundary conditions the total
electromagnetic energy should remain constant. In this particular finite
element method the instantaneous energy is the numerical version of
the total energy given by

E=cTAe+dTDo. 3)

Many time integration methods such a forward Euler, backward Euler,
Runge—Kutta, Adams—Bashforth, etc. are inherently dissipative and the
energy as measured by (3) is not conserved; given an initial condition
the electromagnetic energy will decay exponentially.

The very popular second-order central difference (also known as a
“leap frog”) method applied to system (2) can be written as

en =en1 +AtATK Db, 1 —j)
butr/2 =bu_ryz + At(=K en). )

It is well known that this particular method is both conditionally
stable and nondissipative; the energy as measured by (3) is conserved.
Our goal is to apply higher order energy conserving time integration
methods to system (2). This is required to take full advantage of the
higher order finite element basis functions. The resulting method is
higher order in both space and time and will have significantly less
numerical dispersion than low-order FDTD type methods, which is
important for electrically large problems.

III. CONSERVATIVE TIME INTEGRATION

Consider a general system of ODEs, with field values p and ¢ and an
independent variable £, that is of the specific form

a

ap = F((Iﬂt)

3]

&q =G(p). )]

Systems of this form have the property of being nondissipative, i.e., the
system does not lose energy as it evolves in time. Numerical integra-
tion methods for solving system (5) should likewise be nondissipative.
For linear equations, such methods are typically written as an update
scheme of the form

|:1)n+1 :| — M |:pn:| (6)
dn+1 dn

where the field values at a new state are expressed in terms of values at
previous states. There are three specific cases of interest based on the
matrix norm of M, given by

> 1, unstable
M| ¢ =1, neutrally stable (nondissipative) @)
< 1, stable, dissipative.

When the eigenvalues of the update matrix all lie within the unit circle
in the complex plane, the method will be stable and dissipative. Nondis-
sipative methods have the additional property that the eigenvalues of
the update matrix all lie on the unit circle in the complex plane, with
additional constraints on the eignevectors for stability [11]. The map-
ping is said to be symplectic if the following relation holds [17]

OMT SOM =S ®)

where

2191

TABLE 1
COEFFICIENTS FOR METHODS OF ORDER ONE THROUGH FOUR

Order 1 — Truncation Error = Az’

a; =1 by =1
Order 2 — Truncation Error = A

a=1/2 b=0
a=1/2 by=1
Order 3 — Truncation Error = At*

a1 =2/3 by =17/24
ay=-2/3 by=3/4
a3 =1 by=—1/24
Order 4 — Truncation Error = Af>

ay = Q2+213 42713 /6 by =0

by=1/(2-2'73)
by =1/(1-22/3)
ba=1/(2-2'73)

ay=(1-23-2713)/6
az=(1-23-2"13)/6
ay= (2423 +2713)/6

where F and & represent discretized versions of the original functions
F and GG. The matrix S is referred to as the symplectic matrix, where the
word symplectic literally means “intertwined.” Note that this definition
only makes sense if the vectors of unknowns p and ¢ are of the same
dimension, as in the case of a Hamiltonian system where ¢ denotes the
generalized coordinates and p the generalized momenta.

As a specific example, consider the simple harmonic oscillator
(SHO) where F(gq,t) = ¢ and G(p) = —p. An exact solution to this
simple problem is given by p(t) = sin(t) and ¢(f) = cos(t). We
can quantify the energy of this system (i.e., a conserved or constant
quantity) by the value

E=p(t)+d*(t)

which for this specific example is equal to 1. Applying the leap frog
method to the SHO yields the following update scheme

)= s a Zhe
In+1/2 —At (1—Af2) In—1/2 '

It is a straightforward calculation to show that this update scheme sat-
isfies (8) and is therefore symplectic. However, it is also straightfor-
ward to show that this mapping does not conserve the exact value of
& under iteration. This is due to the fact that symplectic maps solve
some Hamiltonian exactly, but not the exact one of the system [1], [17].
However, as shown by Yoshida [18], the numerical value of the inexact
conserved quantity & oscillates about the exact value € and the ampli-
tude of this oscillation is reduced as the order of the symplectic method
is increased.

To demonstrate the properties of symplectic integrators for conserva-
tive systems, we proceed to solve the SHO system numerically using
both a symplectic method (the order three case from Table I) and a
nonsymplectic fourth-order Runge—Kutta method. In both cases, the
system is propagated from ¢t = 0 to ¢ = 250 using a time step of
At = 0.8 and the computed maximum global phase error will grow
linearly at each time step. Where the two cases differ is in the compu-
tation of the energy of the system. Fig. 1 shows the computed numerical
energy of the system at each time step for both methods. For the sym-
plectic method, the numerical energy is of the form

E=6 cos(v1 t) &
while for the nonsymplectic method the energy is of the form
E =6 exp(—y2 t) &.

Fig. 2 shows a parametric plot of the conjugate variables as a function
of time. The numerical energy for the symplectic method oscillates at a
fixed amplitude around the exact value, and is therefore conserved (in
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Numerical energy at each time step using a symplectic method and a nonsymplectic Runge—Kutta method.

(b)

Fig. 2. Parametric phase plots of the conjugate variables of a simple harmonic oscillator using (a) a symplectic method and (b) a nonsymplectic Runge—Kutta

method.

a time averaged sense). The energy for the nonsymplectic method dis-
sipates exponentially from the exact value, indicating spurious damp-
ening of the system.

Such behavior is typical of symplectic methods when applied to con-
servative systems, and has therefore motivated us to apply them to the
particular system of (2). It should be noted that when a symplectic
method is applied to the Maxwell system of ODEs (2) the result does
not satisfy the symplectic property of (8). This is due to the fact (as
mentioned previously) that the vectors e and b are not of the same di-
mension and that the matrix K is rectangular. Nevertheless this does
not preclude the method from being used, in fact it has been success-
fully used in FDTD schemes where the dimension of e (the number of
mesh edges) is different than the dimension of b (the number of mesh
faces) [2], [3]. We demonstrate through computational experiments in
Section V that high-order symplectic methods do work when applied to
system (2) and correctly reproduce the previously mentioned features
of stability, high accuracy, and no nonphysical dissipation.

IV. GENERAL SYMPLECTIC ALGORITHM

We now present the general symplectic integration algorithm used in
our experiments. The algorithm is valid for ODE systems of the form
(5), such as (2). The inputs, procedure and outputs of the method are
presented in Algorithm 1. Numerical methods for the integration of a

set of differential equations are typically characterized by the accuracy
of a single step in time (the independent variable). If for some small
time step At the integration is performed so that it is accurate through
order At*, then the method is of kth order. In general, a method of
order k will require & evaluations of the functions F' and G. Therefore,
as the order of the method is increased the overall computational costs
will increase likewise. However, as we will show in the next section,
for higher order methods, it is possible to increase the size of the time
step At (while still maintaining numerical stability), thereby reducing
the overall number of time steps. The order of the method can be ad-
justed simply by providing the algorithm with a corresponding set of
coefficients, a and b, each of length order. Table I lists exact values of
the sets of coefficients ¢ and b for methods of order one through four,
as originally computed by Ruth [15] and Candy [19].

Algorithm 1: General Symplectic
Integration Algorithm

input order, the order of the method
F(q,t) and G(p), two functions a and b,

two sets of coefficients Fy and Gy, the
initial conditions ty and tg,, initial and
final time At, the time step to use
output pan and ¢an, the fields at time igy
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Compute the number of time steps:
tﬁn - tO
At

nstep =
Set initial conditions:

p1 < o
q1 — Go

Begin loop over time steps:
for : =1 to nstep do

Begin integration method update :

Pin < Pi

qin — ¢i

for j=1 to order do

Compute the update time for this step :
t; :i*At+]Zlak*At

Update the ﬁleb',l_d1 values :

Pout = Pin + bj * At % F(gin, t;)

Qout = ¢in + aj * At % G(pout)

Pin < Pout

din < Gout

end

Update field values for this time step :
Pi4+1 < Pout

qdi+1 < {out

end

Pfin < pnstep+1
Qfin < qnstep+1

V. NUMERICAL EXAMPLES

‘We now present some computational examples using the symplectic
integration algorithm in conjunction with high-order finite element ma-
trices for the spatial discretization of Maxwell’s equations. The com-
putational domain for these examples is a unit cube subject to either a
PEC (Dirichlet) or a natural zero flux (Neumann) boundary condition.
The Ampere-Faraday system is discretized in space using a very coarse
eight element hexahedral mesh in conjunction with high-order vector
basis functions of polynomial degree p = 4

In each of the following examples, the time integration schemes are
subject to a stability condition. This stability condition is based on
the spectral radius of the amplification matrix which is applied to the
system at every time step in an update method of the form (6). For the
discrete Maxwell equations of system (4), there exists an upper bound
on the largest stable time step given by [11]

2
< .
= \/MaxEBig(A-' K" DK)

We have found that about 0.95 times the upper bound of this constraint
is sufficient for symplectic methods of order one through three; higher
order methods require a smaller time step to remain stable. For ex-
ample, we have found that for the fourth-order method from Table I,
about 0.70 times the upper bound is sufficient for stability.

In addition, for each of the following examples, evaluation of the
function F' during the update phase requires that a linear system in-
volving the matrix A must be solved. To simplify this process, we per-
form the linear solve using a diagonally scaled Conjugate Gradient al-
gorithm. However, this process could be made more efficient by using
a sparse direct solver.

At

®
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Fig. 3. Global phase error at each time step for the first-order symplectic
integration method.

0.00075
0.0005 |
0.00025

0

Error

-0.00025 - ||/
-0.0005

-0.00075

Fig. 4. Global phase error at each time step for the third-order symplectic
integration method.

A. Example 1

In this example we demonstrate the growth of global phase error for
the time integration of (2) using two different methods. We begin by
solving the general eigenvalue problem

Sr = \Ax (10)
subject to a zero flux boundary condition [20]. Here, S is the one-form
stiffness matrix (i.e the C'url — C'url matrix) and this system represents
the resonant modes of the unit cube. We locate the first nonzero eigen-
value of this system (representing the first resonant mode of the cavity)
and its corresponding eigenvector. Using basis functions of polynomial
degree p = 4 on a coarse eight element mesh, the first resonant mode
is computed to an accuracy of 10~*. We then use the computed eigen-
vector as the initial condition for the electric field in (2), the magnetic
field will have a zero value initial condition. System (2) is then propa-
gated forward in time for a total of 300 s (using a value of unity for the
speed of light). The resulting computed electric field will be an oscil-
latory cosine wave with a frequency equal to the first resonant mode of
the cube. We compare the global phase error in the computed solution
against the exact value using both a first and third-order symplectic
integration method. The first-order method is integrated using a time
step of At = 0.005 s yielding a total of 60,000 time steps while the
third-order method is integrated using a time step of At = 0.015 s
yielding a total of 20 000 time steps. The resulting computations there-
fore require the same total amount of CPU time to complete. The re-
sulting global phase errors are shown in Figs. 3 and 4. Note that in both
cases, the maximum global phase error grows linearly at each time step,
but the third-order method yields a much slower rate of growth with a
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Fig. 5. Numerical energy at each time step for the first-order method.
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Fig. 6. Numerical energy at each time step for the third-order method.

maximum global phase error two orders of magnitude smaller than the
first-order method for roughly the same computational cost.

Figs. 5 and 6 show the computed value of the numerical energy from
(3) at each time step for both the first and third-order methods (for
visual clarity, only values for the last 50 s are shown). Note that for both
cases the numerical energy oscillates around the exact value, but for
the third-order case, the amplitude of this oscillation is several orders
of magnitude smaller than for first-order method, again for roughly the
same computational cost.

B. Example 2

In this example we compute the resonant modes of the cubic cavity
subject to a PEC boundary condition using two different integration
methods. We do this by creating an oscillating electromagnetic field in-
side the cavity by applying a time dependent current source to a random
sampling of the interior degrees of freedom. The simple current source
has a temporal profile equal to the second derivative of a Gaussian
pulse. Setting the speed of light equal to unity, we let the simulation run
for a physical time of 300 s, then Fourier transform the resulting field
amplitude to obtain both the transverse electric and transverse mag-
netic resonant modes of the cavity [21]. The errors for the first five
excited modes of the cavity are computed using both a first-order and
a third-order symplectic integration method. The exact values and the
computed Fourier spectrum for the case of the third-order method are
shown in Fig. 7. The results for both calculations are summarized in
Table II. Again, note that for roughly the same computational cost, the
third order method gives results that are more accurate than the first
order method. We know from eigenvalue computation of Example 1
that the high-order spatial discretization is capable of computing the
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Fig. 7. Computed resonant modes of cubic cavity using a third order
symplectic method. Vertical lines represent exact values.

TABLE II
COMPARISON OF RESULTS FOR TWO INTEGRATION METHODS

| 1st Order 3rd Order
Physical Time 300 sec 300 sec
Time Step 0.005 sec 0.015 sec
No. Steps 60,000 20,000
Avg. CPU time/step | 0.0941365 sec  0.297556 sec
Total Run Time 94.1 min 99.2 min
Error in 1st Mode 1.3809¢-3 1.0935¢-4
Error in 2nd Mode 8.9125¢-4 3.8032¢-4
Error in 3rd Mode 5.3780c-4 5.3780¢c-4
Error in 4th Mode 1.5442¢-3 2.7264¢-4
Error in 5th Mode 3.2044¢-3 6.1035¢-4

modes to an accuracy of 10™*, and the data in Table II clearly shows
this same accuracy can be achieved in the time domain only if a higher
order time integration is used.

VI. CONCLUSION

The results of this paper are twofold. First, we have demonstrated
that high-order time integration methods used in conjunction with high-
order spatial discretizations can yield more accurate numerical results
for roughly the same computational cost as a low-order method. Sec-
ondly, we have presented a general symplectic method for the integra-
tion of the time dependent Maxwell equations. Symplectic time inte-
gration methods have been developed for Hamiltonian systems such as
those that arise in astrophysics and molecular dynamics, where very
long time integration is required. We show that these methods can be
successfully applied to a finite element discretization of Maxwell’s
equations, resulting in higher order and energy conserving integration.
The higher order symplectic methods used in this paper are no more
complicated or expensive than traditional Runge—Kutta methods.
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